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1. INTRODUCTION

Let V be an n-dimensional subspace of the space C(D) of continuous
real-valued functions on a compact Hausdorff space D. For the norm of
IE C(D), we take

1IIII = sup{1 j(x)1 : xED}.

A signature a is a function on D which has finite support and whose nonzero
values are either +I or -1. We say that a signature a is extremal with respect
to V if there exists a nonzero positive measure p, whose carrier is contained
in the support of a such that Ju(x) a(x) dp,(x) = 0 for all u E V. By a con
vexity argument [1, 2], one can show that this definition is equivalent to the
statement that there is no u E V such that u(x) a(x) > 0 for all x in the support
of a.

The notion of an extremal signature plays a central role in the theory of
Chebyshev approximation [1]. Indeed, suppose IE C(D) is given, and for
each u E V define

Ef+(u) = {xED :f- u = iif- ull},

Ef-(u) = {x E D :f - u = -Ilf - u II},
Ef(u) = Ef+(u) U Ef-(u).

The best approximations oflout of V are characterized in

THEOREM 1.1. [1]. Let d = inf{llf - u II: u E V}. Then u* E V satisfies
lif - u* II = d if and only if there is an extremal signature a with support
in EtCu*) such that (f - u*) a ;:? O.

* This research was performed while the author held an NSF graduate fellowship at
Cornell University, Ithaca, New York 14850.
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As pointed out by Collatz [4], extremal signatures can be used to obtain
lower bounds on the deviation of best Chebyshev approximations. The
idea here is based on

THEOREM 1.2 [4]. Let a be an extremal signature with support E.
Suppose v E V is such that (f - v) a ~ O. Then

min{1 f(x) - v(x) I : x E E} ~ d ~ III - v II

where d = inf{111 - u II : u E V}.

If D is a subset of the real line and V satisfies the Haar condition, then a
complete characterization of the extremal signatures is known [2]. Moreover,
based on this characterization, effective numerical algorithms have been
developed for computing best approximations [8]. However, for subspaces
without the Haar condition, much less is known about the extremal
signatures. For polynomials of several variables, a number of results con
cerning the extremal signatures have been discovered [3-7]. Of particular
interest is the paper [3] by H. S. Shapiro which presents a method for
generating an evidently large number of extremal signatures.

In this paper, we consider a way to construct a collection of extremal
signatures for polynomials in two variables. Also, by constructing certain
product measures, we show how to obtain some additional extremal
signatures.

2. BASIC RESULTS

The space of polynomials of degree n in k real variables will be denoted
by Pn k. In particular, a polynomial pEPn2 has the form

p(x, y) = L CksXkyS,
k,8~O

where k + s ~ n and the Cks are real numbers. By R(ex) we shall denote the
rotation of the plane

-sin CX) .
cos ex

Now, for given integers n ~ 1 and m ~ 1, define Un •m to be the set of all
p E p n2 such that po R(21T/m) = p. Thus, Un .m consists of all polynomials of
degree n which are invariant under a rotation through 21T/m. We observe
that Un •m is a linear subspace of Pn2.
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Let Sm be a sector of the plane with vertex angle 27T/m, which in polar
coordinates we write as Sm = {(r, rp) : 0 :S; rp < 27T/m}. Our approach to
constructing extremal signature is based on

LEMMA 2.1. Let a be a signature on Sm which is extremal with respect to
Un .m . Then the signature

a* = sgn(~: a o R(27Tk/m))

is extremal with respect to Pn 2. The support ofa* consists ofallpoints with polar
coordinates of the form (p, 0 + 27Tk/m) where (p, 0) is a point in the support
of a, and k is an integer.

Proof Suppose pEPn 2 is such that pa* > 0 at all points in the support
of a* . Let

m-l

p* = L po R(27Tk/m).
k~O

Then p* E Un .m . From the definition of a* we see that all points in the
support of a* have the form (p, 0 + 27Tk/m), where (p, 0) is the support of a.
It follows that p*a* > 0 on the support of a* . In particular, for the points
in the support of a, we have p*a > 0, which is a contradiction.

Thus, we can construct extremal signatures for Pn 2 by constructing
signatures on Sm which are extremal with respect to Un,m . To implement this
idea, we must know the form of the polynomials in Un .m . For any p E p n2,

we can write
n

per cos rp, r sin rp) = L rktirp),
k~O

(2.1)

where tk is a trigonometric polynomial of degree :S;k. If po R(27T/m) = p,
then each tk is periodic with period 27T/m. Thus, t k has the form

[kim]

tk(rp) = L a;k) COS vm rp + b~k) sin vm rp,
v=o

and therefore we can rewrite expression (2.1) as

[nlm]

p = L p~1)(r2) rkm cos km rp + p~2)(r2) rkm sin km rp, (2.2)
k~O

where p~) and p~2) are polynomials of degree at most [en - km)/2]. Hence,
a polynomial p belongs to Un •rn if and only if p has the form (2.2). We
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observe that if nlm is not too large, the expression (2.2) is relatively simple,
and thus it is not difficult to determine the signatures on Sm which are
extremal with respect to Un .m .

3. THE CASE n :'( m - 1

Suppose we select the integers nand m such that n :'( m - 1. From (2.2),
the polynomials in Un •m have the form p(r2), where r 2 = x 2 + y2 and
p E Ptn/2]' Now, it is easy to show that any signature a on Sm which is
extremal with respect to Un •m must be one of the following two types:

1. The support of a consists of two points (r, qJl) and (r, qJ2) in Sm
where r > 0 and a(r, qJl) a(r, qJ2) = -1.

U. The support of a consists of N = [nI2] + 2 points (ri' qJi) E Sm
where

and

The extremal signatures for Pn 2 corresponding to the signatures of type I
consist of at least 2n + 2 points with alternating signs on the circumference
of a circle. Hence, these extremal signatures are a special case of a well-known
extremal signature [3] for Pn2• However, some of the extremal signatures for
Pn2 corresponding to the signatures of type II are new. For example, consider
the particular extremal signature in Fig. 1 which is obtained in the case
n = 2, m = 3. This signature bears a slight resemblance to a signature
constructed by Collatz [5]; however, neither signature is a special case of
the other.

I
i~

(

~/

FIG. I. Extremal signature of type II for n = 2 and m = 3.

One can show by a direct calculation that the extremal signature here can
not be realized by the method of [3].
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A large variety of extremal signatures for Pn2 can be constructed from the
type II signatures on Sm . It appears that most of these signatures can not be
realized by the method of [3]; however, we have not yet completely inves
tigated this question.

4. SOME MORE GENERAL EXTREMAL SIGNATURES

In general, the extremal signatures obtained here are invariant under a
rotation through the angle 271"1m. It would seem, however, that this restriction
could be relaxed in some cases. In this regard, we consider now a type of
extremal signature which in a special case can be derived by our method,
but which in general is not invariant under a rotation through 271"1m.

We will use the following notation. If a denotes a signature, then a+ will
denote the set of points at which a = +1 and a- will denote the set of points
at which a = --1.

Let n ;;?: 1 be an integer, and let epi for i = 1,2,... , n + 1 be any set of
angles with 0 = epl < ep2 < ... < epn+! < 71". Set epi+n = epi + 71" for
each i. Next, let ri for i = 1, 2, ... , N = [nI2] + 1 be radii such that
o < r1 < r2 < ... < rN . Now, using the polar coordinate system (r, ep),
define the signature Un by

Un+ = {r = O} U {(ri , epj) : i andj are even},

Un- = {(ri' epj) : i andj are odd}.

This signature is illustrated in Fig. 2 for the cases n = 4 and n = 5.

n=4

FIG. 2. The signature Un for n = 4 and n = 5.

For the special case in which epj = 7I"jln + 1, j = 1,2,... , 2n + 2, an can
be constructed from the type II signatures mentioned in the previous section.
However, in the general case, we have
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THEOREM 4.1. For n ;? I, the signature an is extremal with respect to Pn2.

Proof It suffices to construct a measure 0: such that (a) the carrier of 0: is
contained in the support of an, (b) at each point in the carrier of 0:, the sign
of 0: equals the sign of an, and (c) for allp E Pn2, f P do: = O.

Let us assume first that n is even. We construct the measure 0: in three steps.

Step I. Define the signatures e1 and e2 on the real line by

for i = I, 2, ... j [nI2] + I; e1 = 0 otherwise,

and

for i = 1,2,... , [nI2] + I; e2 = 0 otherwise.

Then the signature which has value +I at r = 0 and is defined elsewhere by
e1 + e2 is extremal with respect to Pnl. Hence, there are positive measures
fk+ on e1+, fk- on e1-, A+ on e2+, and A- on e2- such that

for all p E Pnl.

Step 2. The signature A defined by

A(9'i) = (-I)i for i = 1,2,... , 2n + 2, A = 0 otherwise,

is extremal with respect to the space of trigonometric polynomials of degree n.
Hence there are positive measures v+ on ..11+ and v- on ..11- such that

for all trigonometric polynomials t(9') of degree n. We will make the
normalization

f dv+ = f dv- = 1.

Step 3. Now, let 0: be the measure on the plane with finite carrier which
assigns measure + I to the origin r = 0, and which is defined elsewhere by

It is easy to check that 0: has properties (a) and (b) mentioned above. As for
property (c), let us consider each term in (2.1) separately:
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I. When k = 0, the term has the form per) where p E Pnl. Then

f p dex = p(O) + f P dfL+ + f P dA+ - f p dfL- - f p dA- = O.

2. When k ~ I, the term has the form per) t(ep) where p E pnl and
p(O) = 0, and t is a trigonometric polynomial of degree ~n. Hence

f p(r)t(ep)dex = (f pdfL+)(f tdv+) + (f pdA+)(f tdv-)

- (f p dfL- )(f t dv-) - (f p dA- ) (f t dv+)

= (p(O) + f pdfL+ + f pdA+- f pdfL-- f pdA-)(f tdv-)

= O.

Thus, the measure ex has the desired properties which completes the proof
when n is even. If n is odd, the same proof will hold, provided we replace
the term dA+(r) dv-( ep) in (4.1) by dA+(r) dv+(ep), and we replace dA-(r) dv+( ep)
by dA-(r) dv-(ep).

From this proof, we can obtain other extremal signatures by using an idea
of Newman and Shapiro [6]. In steps I and 2 we had measures fL, A, and v

such that

p(O) + f p dfL + f p dA = 0

for all p E Pn \ and

f t dv = 0,

for all trigonometric polynomials t(ep) of degree ~n. Now, let fL = fLl - fL2'
A= Al - A2 and v = VI - V 2 be arbitrary decompositions of fL, A, v, and let
ex be the measure which assigns measure f dVl , to the origin r = 0 in the
plane, and which is defined elsewhere by

dfLl dVl + dA1 dV2 - dfL2 dV2 - dA2dVl .

Then it follows that

f p dex = 0

for all pEPn2. Thus, the measure ex determines an extremal signature for
Pn2. Some extremal signatures which were obtained in this fashion are
shown in Fig. 3.
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n=4 n =5

FIG. 3. Extremal signatures obtained by product measures.

In general,productmeasures can be used to obtainmany extremal signatures
for polynomials [6, 3]. In [6], this approach was used for polynomials written
in a cartesian product form. Clearly, the underlying ideas in [6] can be applied
to polynomials written in the form (2.1). For example, suppose fL(r) and v(q»
are measures with finite carriers on r ~ 0 and 0 :(; q> < 27T, respectively,
such that

p(O) + Jp(r) dfL(r) = 0,

for all p E pnl and

Jt(q» dv(q» = 0,

for all trigonometric polynomials of degree n. Let a be the measure which is
+1 at the origin and is given elsewhere by dfLI dVI - dfL2 dv2, where
fL = fLI - fL2' V = VI - v2· Then f p da = 0 for all p E Pn2, so that a
determines an extremal signature for p n2 [Fig. 4(a)].

As another example, suppose the measures fL(r) and v( q» are selected so
that

Jt(q» dv(q» = 0,

for all trigonometric polynomials t(q» degree :(;k, where 0 :(; k :(; n, and

for s = k + 1, k + 2,... , n. Then the measure da = dfL(r) dv(q» determines
an extremal signature for Pn2 [Fig. (b)].
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n=4,k=2

n + 1 circles

2(n +1) rays

(0)

n - k + 1 circles

2k+2 rays

(b)

FIG. 4. Other extremal signatures obtained by product measures.

5. THE CASE n = m + 1

As one further illustration of our approach to constructing extremal
signatures, let us consider the case n = m + 1. Assuming m ;:? 2, the
polynomials in Un •m have the form

(5.1)

where C1 and C2 are real numbers and p E ptn/2]' Thus, in the sector
{(r, g;) : 0 :s;; g; < 27T/m}, we are searching for extremal signatures for the
polynomials (5.1).

Let T denote the space of trigonometric polynomials of form C1 cos g; +
C2 sin g;, and let Vn be the space of functions p(r2) where P E Ptn/2] . Since the
variable r is restricted to be nonnegative, it is easy to see that Vn satisfies the
Haar condition. The polynomials (5.1) can now be written in the form
rmt(mg;) + v(r) where t E T and v E Vn • It suffices, therefore, to find the
extremal signatures on the set X = {(r, g;) : r ;:? 0, O:s;; g; < 27T} with
respect to functions of the type

where t E T and v E Vn •

Suppose now that a(r, g;) is a measure with finite carrier in X such that

fx [rmt(g;) + vCr)] da = 0

(5.2)

(5.3)
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for all v E Vn and t E T. For definiteness, assume the carrier of a is contained
in the lines f{J = f{J1 , ••• , f{J = f{JN in X, and set iL;(r) = a(r, f{J;) for
i = 1,2,... , N. Then (5.3) becomes

N

o = .L t(f{J;) Jrm diL;(r) + Jv(r) dex(r),
,~l

where ex = iLl + iL2 + ... + iLN' Taking t = 0 in this equation, we find
that

Jv(r) dex(r) = 0

for all v E Vn . It follows, therefore, that

N

.L t( f{J;) Jrm diL;(r) = 0
;=1

(5.4)

(5.5)

for all t E T. Thus, we have two properties, (5.4) and (5.5) which a must
satisfy in order for (5.3) to hold.

On the other hand, suppose f{J1 , ••• , f{JN are arbitrary distinct points in
[0,21T) and .\1 ,... , AN are real numbers such that

N

.L t(f{J;) A; = 0
;=1

(5.6)

for all t E T. Further, let ex(r) be a measure with finite carrier on r ~ 0 such
that

Jv(r) dex(r) = 0

for all v E Vn • We wish to find measures iLl"'" iLN such that

(5.7)

i = 1,2,...,N,

and

iLl + iLz + ... + iLN = ex.

Clearly, in order for such measures iL; to exist, it is necessary that

NJr m dex = .L '\.
;~l

(5.8)
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However, this condition is also sufficient. Indeed, construct measures
fi'1 , ... , fi'N-1 with finite carrier on r ~ °so that

for i = 1,2,... , N - 1, and set

N-l

fi' N = ex - L fi'i'
i=l

Then fi'N is a measure with finite carrier on r ~ 0, and it follows immediately
from (5.8) that

Hence, fLl ,... , fLN satisfy Eqs. (5.4) and (5.5), and therefore the measure
a(r, rp) on X given by a(r, rp,) = fL;(r) for i = 1,2,... , Nand a(r, rp) = °
otherwise, determines an extremal signature on X with respect to the
functions (5.2).

'P

~

';",
I
I
I
I
I
I
I.. .. .. ..

dim Fn even

'P

1 2 34 . .N-l N

- ~ -
T I ~

I I I
I I I
I I I
I I I
I I I
I I I
I I I

r - - ,- r- - - - - -v-
1 234 . . N-I N

dim Fn odd

rp

~I,---e-~
~ I I I
j I I I
I I I 1
I I I I

I I I I I

I
I I I : I.. I. 0-" I

, 2 3 4 5. N-l N

·r

-~
I
I,,
I
I- ..!-- V'

23 .

dim F n even

N

r

N = dim Fn + 1

FIG. 5. Extremal signatures on X for the case n = m + 1.
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From this development, it follows that we can obtain all the extremal
signatures on X with respect to the functions (5.2) by constructing the
extremal signatures corresponding to the measures iLl'"'' iLN . A particularly
simple way to choose Al ,... , AN is to require that (5.6) hold for all trigono
metric polynomials of degree one. Then the "compatibility condition"
(5.8) becomes

f rm dex(r) = O. (5.9)

Now, let Fn be the space of functions on r ;;;: 0 with the form arm + v(r),
where v E Vn • Using Descartes' rule of signs, it is not difficult to see that Fn

satisfies the Haar condition for each n. Hence, since ex is characterized by
properties (5.7) and (5.9), any extremal signature corresponding to ex contains
K n + 1 points with alternating signs, where Kn is the dimension of Fn • We
observe that Kn = [n/2] + 1 if n is odd, and Kn = [n/2] + 2 if n is even.

It is clear that many extremal signatures can be obtained in the case
n = m + 1. In Fig. 5, we illustrate only a few of them. For convenience, we
have taken N = 2 and Al = 1..2 = O. Even in this special case, there are
many extremal signatures.

6. CONCLUSION

An analysis similar to the one in the previous section can be performed
for the case n = m + k where k < m. In general, however, our "rotation"
technique for constructing extremal signatures becomes somewhat difficult to
implement when the ratio n/m is very large. Even so, a large variety ofextremal
signature for Pn 2 can be obtained by this method.

All of our extremal signatures are invariant under some rotation of the
plane. However, as hinted in Section 4, this restriction is probably not
essential.

We suspect that many of our extremal signatures cannot be realized
by the method of [3], but this question requires further investigation.
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